

1. Экспериментальные исследования

Рис. 1.1 Общий вид экспериментальной установки: 1 – стеклянная труба (d_{вн}=0.039 м), 2 – высокоскоростная камера; 3 – лазер; 4 – короб с дистиллированной водой для устранения оптического искажения; 5 – шнековая вставка; 6 – место подсвечивания лазерным ножом.

Рис. 1.2. Рабочий участок экспериментальной установки крупным планом.

2. Апробация метода визуализации на классической задаче обтекания шара вязкоупругой жидкостью (*FC PAA* полиакриламид).

Рис. 2.1. Единичный кадр съемки обтекания шара

частота съемки 740 Hz

Рис.2.2 Профили осевой и радиальной составляющей вектора скорости при обтекании шара в круглой трубе

Рис. 3.1. Распределение первой разности нормальных напряжений:

Re=10, We=1.78; A_i – сечения канала.

Распределение безразмерной осевой составляющей вектора скорости

Распределение первой разности нормальных напряжений

Рис. 3.2. Численные данные о распределении осевой составляющей вектора скорости и первой разности нормальных напряжений при обтекании шара

4. Визуализация течения вязкоупругой жидкости

Рис. 4.1. Единичный кадр съемки течения FC РАА между ребрами шнековой вставки

Рис. 4.2. Профили осевой составляющей вектора скорости в сечениях, расположенных между ребрами шнековой вставки (S/D=1): *1* – *A*₃; *2* – *A*₂; *3* – *A*₁

Рис. 4.3. Профили осевой составляющей вектора скорости в сечениях, расположенных между ребрами шнековой вставки (S/D=2): $1 - A_3$; $2 - A_2$; $3 - A_1$

5. Математическое моделирование

Реологическое уравнение состояния среды Гиезекуса

$$\begin{cases} \boldsymbol{\sigma} = \boldsymbol{\sigma}_{V} + \boldsymbol{\sigma}_{N}, \boldsymbol{\sigma}_{N} = 2\mu_{N}\mathbf{D}, \\ \boldsymbol{\sigma}_{V} + \lambda \, \boldsymbol{\sigma}_{V} + \frac{\alpha_{G}\lambda}{\mu_{V}} \boldsymbol{\sigma}_{V} \cdot \boldsymbol{\sigma}_{V} = 2\mu_{V}\mathbf{D}, \end{cases}$$

где $\mathbf{\sigma} = \frac{d\mathbf{\sigma}}{dt} - \mathbf{\sigma} \cdot \nabla \mathbf{V}^T - \nabla \mathbf{V} \cdot \mathbf{\sigma} = \frac{\partial \mathbf{\sigma}}{\partial t} + \nabla \mathbf{\sigma} \cdot \mathbf{V} - \mathbf{\sigma} \cdot \nabla \mathbf{V}^T - \nabla \mathbf{V} \cdot \mathbf{\sigma}$ - верхняя конвективная производная тензора $\mathbf{\sigma}$;

 σ - девиатор тензора напряжений; σ_N, σ_V - вязкая и упругая составляющие тензора σ ; **D** - тензор скоростей деформаций; μ_N, μ_V -вязкости; λ - время релаксации; α_G - реологический параметр; **V** - вектор скорости.

В настоящей работе использована следующая винтовая система координат ξ^1, ξ^2, ξ^3

$$\begin{cases} x = \xi^{1} \cos\left(\pm\omega\xi^{3}\right) - \xi^{2} \sin\left(\pm\omega\xi^{3}\right) \\ y = \xi^{1} \sin\left(\pm\omega\xi^{3}\right) + \xi^{2} \cos\left(\pm\omega\xi^{3}\right), \\ z = \xi^{3} \end{cases}$$
(5.1)

где x, y, z - декартовая система координат, $\omega = (2\pi)/S$, R - радиус трубы с ленточной винтовой вставкой, *S* -шаг ленточной вставки(длина части канала, соответствующая повороту ленты на 360 градусов). В (5.1) знак "+" выбирается в случае, когда жидкость течет в сторону, закрученной по часовой стрелке ленточной вставки, а знак "-" - в случае течения, закрученной против часовой стрелки. Система уравнений переноса количества движения и неразрывности, описывающая стационарное ламинарное течение жидкости Гиезекуса в канале с винтовой симметрией (шнековой вставкой)

$$\begin{split} & \operatorname{Re}^{*}\left(\left(\frac{\partial v^{l}}{\partial \eta^{1}}\mp\kappa\eta^{2}\frac{\partial v^{3}}{\partial \eta^{1}}\right)v^{1}+\left(\frac{\partial v^{l}}{\partial \eta^{2}}\mp\kappa\eta^{2}\frac{\partial v^{3}}{\partial \eta^{2}}\mp 2\kappa v^{3}\right)v^{2}-\kappa^{2}\eta^{1}\left(v^{3}\right)^{2}\right)=\\ &=-\frac{\partial p^{*}}{\partial \eta^{1}}+\frac{\partial s_{1}^{1}}{\partial \eta^{1}}\pm\frac{\partial s_{1}^{2}}{\partial \eta^{2}}\mp\kappa s_{2}^{3},\\ & \operatorname{Re}^{*}\left(\left(\frac{\partial v^{2}}{\partial \eta^{1}}\mp\kappa\eta^{1}\frac{\partial v^{3}}{\partial \eta^{1}}\pm 2\kappa v^{3}\right)v^{1}+\left(\frac{\partial v^{2}}{\partial \eta^{2}}\mp\kappa\eta^{1}\frac{\partial v^{3}}{\partial \eta^{2}}\right)v^{2}-\kappa^{2}\eta^{2}\left(v^{3}\right)^{2}\right)=\\ &=-\frac{\partial p^{*}}{\partial \eta^{2}}\pm\frac{\partial s_{1}^{1}}{\partial \eta^{1}}\pm\frac{\partial s_{2}^{2}}{\partial \eta^{2}}\pm\kappa s_{1}^{3},\\ & \operatorname{Re}^{*}\left(\mp\kappa\eta^{2}\frac{\partial v^{1}}{\partial \eta^{1}}\pm\kappa\eta^{1}\frac{\partial v^{2}}{\partial \eta^{2}}+\left(1+\kappa^{2}\left(\left(\eta^{1}\right)^{2}+\left(\eta^{2}\right)^{2}\right)\right)\frac{\partial v^{3}}{\partial \eta^{2}}+2\kappa^{2}\eta^{1}v^{3}\right)v^{1}+\\ &+\operatorname{Re}^{*}\left(\mp\kappa\eta^{2}\frac{\partial v^{1}}{\partial \eta^{1}}\pm\kappa\eta^{1}\frac{\partial v^{2}}{\partial \eta^{2}}+\left(1+\kappa^{2}\left(\left(\eta^{1}\right)^{2}+\left(\eta^{2}\right)^{2}\right)\right)\frac{\partial v^{3}}{\partial \eta^{2}}+2\kappa^{2}\eta^{2}v^{3}\right)v^{2}=\\ &=-\frac{\partial p^{*}}{\partial \eta^{3}}+\frac{\partial s_{1}^{3}}{\partial \eta^{2}}\pm\kappa s_{2}^{1}\pm\kappa s_{1}^{2}+\kappa^{2}\eta^{1}s_{1}^{3}+\kappa^{2}\eta^{2}s_{2}^{3},\\ &\frac{\partial v^{1}}{\partial \eta^{1}}+\frac{\partial v^{2}}{\partial \eta^{2}}=0,\\ &\operatorname{Exe}(\kappa=\omega R, \frac{\partial p^{*}}{\partial \eta^{3}}=\operatorname{const}, \eta^{i}=\xi^{i}/R(i=1,2,3)-\operatorname{6espa3sephuse}$$
 переменные; и $v^{i}=V^{i}/V^{*}(i=1,2,3)$
Gespa3sephuse контравариантные компоненты скорости; $p^{*}=PR/((\mu_{N}+\mu_{V})V^{*})$ - безразмерное давление;
&\operatorname{Re}^{*}=V^{*}R/(\mu_{N}+\mu_{V}) - модифицированное число Рейнольдса; V^{*} - некоторое характерное значение

скорости.

Смешанные безразмерные компоненты девиатора тензора напряжений $\mathbf{s} = \frac{R}{(\mu_N + \mu_V)V^*} \boldsymbol{\sigma}$ в винтовой

системе координат (5.1) имеют вид

$$s_i^{\ j} = 2(1-\beta)d_i^{\ j} + \beta s_{Vi}^{\ j},$$

где $\beta = \frac{\mu_V}{\mu_N + \mu_V};$

 d_i^{j} - смешанные компоненты безразмерного тензора скоростей деформаций $\mathbf{d} = \frac{R}{(\mu_N + \mu_V)V^*} \mathbf{D};$

 s_{Vi}^{j} смешанные компоненты безразмерной упругой части $\mathbf{s}_{V} = \frac{R}{(\mu_{N} + \mu_{V})V^{*}} \mathbf{\sigma}_{V}$ девиатора тензора

напряжений.

6. Вискозиметрические измерения

с мешальником ViscoJet

Эффект Вайсенберга

Система плита-плита с верхним кожухом, реометр Physica MCR 102

Рис. 6.1. Приготовление и вискозиметрические исследования водного раствора полиакриламида высокомолекулярного (FC PAA)

(a)

(б)

Измерительная система плита-плита 50 мм

7. Результаты численных исследований

Рис. 7.1. Поперечное (а) и продольное (б) сечение канала с однозаходной шнековой вставкой

Рис. 7.2. Поперечное (а) и продольное (б) сечение канала с двухзаходной шнековой вставкой

L – шаг винтового канала (длина части канала, соответствующая повороту ребер шнека на 360 градусов)

Рис. 7.3. Контуры осевой составляющей вектора скорости

Рис. 7.4. Контуры упругой составляющей тензора напряжений (s¹³)

Рис. 7.5. Контуры упругой составляющей тензора напряжений (s²³)

(a) - $\operatorname{Re}_{H} \to 0 (We_{H} = 0.4)$ (б) - $\operatorname{Re}_{H} = 150 (We_{H} = 0.4)$ (в) - $Re_{H} = 150 (We_{H} = 0)$ – ньютоновская жидкость

Рис. 7.6. Смешанные безразмерные компоненты девиатора тензора напряжений (касательные)

Рис. 7.7. Смешанные безразмерные компоненты девиатора тензора напряжений (нормальные)

$$s_i^{\ j} = 2(1-\beta)d_i^{\ j} + \beta s_{Vi}^{\ j}$$

Re_H = 150(We_H = 0.4)

Рис. 7.8. Профили осевой составляющей вектора скорости

Рис. 7.9. Профили радиальной составляющей вектора скорости

 $(L=2*S, Re=44, We=0.1, r_1/r_2=0.66)$

Рис. 7.10. Профили осевой составляющей вектора скорости

Рис. 7.11. Профили радиальной составляющей вектора скорости

 $(S/d_2=3; L=2*S, Re=5, We=0.1)$