ОТЧЕТ ПО ПРОЕКТУ № 18-48-160012 р_а

«Повышение точности расчета отопительно-вентиляционной системы за счет учета влияния нестационарности коэффициента теплоотдачи и влияния явления тепловой релаксации и термического демпфирования на переходные термические процессы в насадке регенеративного воздухоподогревателя»

Руководитель проекта: к.т.н. Юдахин А.Е.

1. Критериальное уравнение теплообмена поверхности насадки со средой, учитывающее зависимость коэффициента теплоотдачи поверхности насадки от длительности периода

По результатам обработки экспериментальных данных для серии пакетов пластин, изготовленных из AISI-430, 12X18H10T, АМц, 08кп, ПММА, получено:

$$Nu = 1,06 \left(\text{Re}/10^3 \right)^{0.14} \left(\text{Fo}/10^3 \right)^{-0.069} \text{Nu}_{\text{st}} , \qquad (1)$$

где Fo = $4a_w \tau_p / \delta_w^2$ – число Фурье; a_w – коэффициент температуропроводности материала насадки, м²/с; δ_w – толщина пластины, м. Коэффициент корреляции в уравнения и опытных точек составил 75 %, а среднее квадратичное отклонение отдельной точки от уравнения менее 9 %.

2. Математическая модель регенеративного воздухоподогревателя

Математической моделью регенератора является решение сопряженной задачи циклического теплообмена пластин насадки с холодным и горячим теплоносителями. Сопряженная задача включает в себя краевую задачу циклического теплообмена пластины с теплоносителями, температура которых изменяется по закону

$$\theta_f(Z,t) = \theta_{f,j} + \sum_{k=0}^{k_{f,i}} Z^k \sum_{l=0}^{k_{f,i}} g_{l,k} t^l$$
(2)

и задачу переноса энергии потоком теплоносителя.

В уравнении (2): $\theta_f(t) = (T_f - T_{\min})/T_*$; T_f – температура теплоносителя на относительном расстоянии $Z \equiv z/l = Y_0 \pm Y$ (Y – относительное расстояние от холодного торца пластины, $Y_0 = 0$ и «+» – в холодном периоде, $Y_0 = 1$ и «-» – в горячем) в относительный момент времени $t = \tau/\tau_{p,j}$; z – расстояние от входа теплоносителя в *j*-м периоде (j = 0, 1), м; τ – время от начала *j*-го периода,с; $\tau_{p,j}$ – длительность *j*-го периода, с; T_{\min} - минимальная температура холодного теплоносителя, °C; T_* – масштаб температуры, °C; $\theta_{f,j}$ – относительная температура теплоносителя на входе в РВП в *j*-м периоде; g_{Lk} – коэффициенты регрессии.

Краевая задача теплопроводности пластины формулируется в относительных переменных и включает в себя систему уравнений :

$$\frac{\partial \theta_{w,j}}{\partial t} = \operatorname{Fo}_{p,j} \left(\frac{\partial^2 \theta_{w,j}}{\partial X^2} + \frac{1}{L^2} \frac{\partial^2 \theta_{w,j}}{\partial Y^2} \right), \qquad 0 < t < 1, \qquad 0 < X < 1, \qquad 0 < Y < 1; \tag{3}$$

$$\theta_{w,j}(X,Y,0) = \theta_{w,j-1}(X,Y,1);$$
(4)

$$\partial \Theta_{w,j}(0,Y,t)/\partial X = 0; \qquad (5)$$

$$\frac{\partial \Theta_{w,j}(\mathbf{l},Y,t)}{\partial X} = -\mathrm{Bi}_{x,j} \Big[\Theta_{w,j}(\mathbf{l},Y,t) - \Theta_{f,j}(Y,t) \Big]; \tag{6}$$

$$\frac{\partial \Theta_{w,j}(X,0,t)}{\partial Y} = \operatorname{Bi}_{Y=0,j} \left[\Theta_{w,j}(X,0,t) - \Theta_{f,j}(0,t) \right];$$
(7)

$$\frac{\partial \Theta_{w,j}(X,\mathbf{l},t)}{\partial Y} = -\mathrm{Bi}_{Y=\mathbf{l},j} \Big[\Theta_{w,j}(X,\mathbf{l},t) - \Theta_{f,j}(\mathbf{l},t) \Big].$$
(8)

Здесь $\theta_w(X,Y,t) = (T_w - T_{\min})/T_*$ – относительная температура пластины на расстоянии *x*, м, от средней плоскости и *y*, м, – от холодного торца пластины; $X = 2x/\delta_w L = 2l/\delta_w$; *l* и δ_w – длина и толщина пластины, м; Fo_{*p*,*j*} = $4a_w \tau_{p,j}/\delta_w^2$ – предельное число Фурье *j*-го периода; a_w – коэффициент температуропроводности тела, м²/c; Bi_{*x*,*j*} = $\alpha_{x,j}\delta_w/(2\lambda_w)$ – число Био боковой поверхности пластины; $\alpha_{x,j}$ – коэффициент теплоотдачи боковой поверхности, BT/(м²K); λ_w – коэффициент теплопроводности тела, BT/(м K); Bi_{*y*=0,*j*} = $\alpha_{y=0,j}l/\lambda_w$ и Bi_{*y*=1,*j*} = $\alpha_{y=1,j}l/\lambda_w$ – числа Био торцов пластины; $\alpha_{y=0,j}$ и $\alpha_{y=1,j}$ – коэффициенты теплоотдачи торцов пластины, BT/(м²K).

Температуры потоков в граничных условиях (6)-(8) задаются уравнением (2). Решение краевой задачи (2)-(8) с улучшенной сходимостью рядов Фурье для *j*-го периода имеет вид:

$$\theta_{w}(X,Y,t) = \theta_{f}(Y,t) + \sum_{n=1}^{\infty} A_{n} \cos(\mu_{n}X) \sum_{m=1}^{\infty} A_{m}K_{y}(\gamma_{m}Y) [\theta_{w,0} \exp(-\zeta_{n,m}^{2}t) + \Psi(t) - W(t)], \qquad (9)$$

$$\begin{aligned} & \text{где } A_n^{-1} = \int_0^1 \cos^2(\mu_n X) \ dX \ ; \qquad A_m^{-1} = \int_0^1 K_y^2(\gamma_{m,j}Y) \ dY \ ; \qquad \zeta_{n,m}^2 = \text{Fo}_p(\mu_n^2 + \gamma_m^2/L^2) \ ; \\ & K_y(\gamma_m Y) = \cos(\gamma_m Y) + \text{Bi}_{Y=0}\sin(\gamma_m Y)/\gamma_m \ ; \\ & \Psi(t) = \text{Fo}_p\left\{\omega_0 \left[\theta_{f,j} \frac{1 - \exp(-\zeta_{n,m}^2 t)}{\zeta_{n,m}^2}\right] + \sum_{l=0}^{k_{l,f}} d_l \vartheta_l(\zeta_{n,m}^2 t)\right\} \ ; \qquad W(t) = \frac{\text{Fo}_p}{\zeta_{n,m}^2} \left(\omega_0 \theta_{f,j} + \sum_{l=0}^{k_{l,f}} d_l t^l\right) \ ; \\ & \omega_0 = \text{Bi}_x \cos(\mu_n) \left[\text{Bi}_{Y=0}L + \gamma_m \psi_y(\gamma_m)\right]/\gamma_m^2 + \frac{\sin(\mu_n)}{\mu_n L^2} \left[\text{Bi}_{Y=0} + \text{Bi}_{Y=1} \ K_y(\gamma_m)\right] \ ; \\ & \psi_y(\gamma_m Y) = \sin(\gamma_m Y) - \text{Bi}_{Y=0}\cos(\gamma_m Y)/\gamma_m \ ; \\ & d_{l,j} = \text{Bi}_{x,nj}\cos(\mu_{n,j}) \sum_{k=0}^{n_z} (\pm 1)^k \ g_{k,l,j} b_k S_k(\gamma_{m,j}) + \frac{\sin(\mu_{n,j})}{L^2 \mu_{n,j}} \left[\text{Bi}_{y0,j} \ g_{0,l,j} + \text{Bi}_{y1,j} K_{y,j}(\gamma_{m,j}) \sum_{k=0}^{n_z} (\pm)^k \ g_{k,l,j} b_k \right] \\ & b_k = \sum_{i=k}^{n_z} K_{k,i-k} Y_0^{i-k} \ ; \qquad K_{k,i} = K_{k,i-1} + K_{k-l,i} \ ; \qquad K_{0,i} = K_{k,0} = 1 \ ; \ S_k(\gamma_{m,j} Y) = \int_0^Y \eta^k K_{y,j}(\gamma_{m,j} \eta) \ d\eta \ ; \end{aligned}$$

μ_n и γ_m – корни характеристических уравнений:

$$\mu_{n} \operatorname{tg}(\mu_{n}) = \operatorname{Bi}_{x} \qquad H \qquad \operatorname{tg}(\gamma_{m}) \left(\gamma_{m}^{2} - \operatorname{Bi}_{Y=0} \operatorname{Bi}_{Y=1}\right) = \gamma_{m} \left(\operatorname{Bi}_{Y=0} + \operatorname{Bi}_{Y=1}\right);$$

$$\theta_{w,0}$$
 – постоянная интегрирования находится из условия переключения (5):

$$\begin{aligned} \theta_{w,0,j} &= \phi_j \sum_{n=1}^{\infty} A_{n,j-1} S_{x,j,j-1} \sum_{m=1}^{\infty} A_{m,j-1} S_{y,j,j-1} \Big[\Psi_{j-1} \big(1 \big) + \\ &+ \exp \Big(- \zeta_{n,m,j-1}^2 \Big) \sum_{n=1}^{\infty} A_{n,j-2} S_{x,j-1,j-2} \sum_{n=1}^{\infty} A_{m,j-2} S_{y,j-1,j-2} \Psi_{j-2} \big(1 \big) \Big]; \\ \phi_j &= \Bigg[1 - A_{n,j} A_{m,j} \sum_{n=1}^{\infty} A_{n,j-1} S_{x,j,j-1}^2 \sum_{m=1}^{\infty} A_{m,j-1} S_{y,j,j-1}^2 \exp \Big(- \zeta_{n,m,j-1}^1 \Big) \Big]^{-1}; \\ S_{x,j,j-1} &= \int_0^1 \cos \Big(\mu_{n,j} X \Big) \cos \Big(\mu_{n,j-1} X \Big) dX ; \quad S_{y,j,j-1} = \int_0^1 K_y \big(\gamma_{m,j} Y \big) K_y \big(\gamma_{m,j-1} Y \big) dY. \end{aligned}$$

Задача переноса энергии потоком теплоносителя. В пренебрежении переносом внутренней энергии теплопроводностью по сравнению с конвективным переносом вдоль потока, в системе координат Z, связанной с потоком теплоносителя, дифференциальное уравнение теплопроводности для средней по сечению канала температуры теплоносителя в относительных переменных может быть представлено в виде:

$$A_{1} \frac{\partial \Theta_{f}(Z,t)}{\partial t} + \frac{\partial \Theta_{f}(Z,t)}{\partial Z} + A_{2} \Big[\Theta_{f}(Z,t) - \Theta_{w}(1,Z,t) \Big] = 0.$$
⁽¹⁰⁾

Здесь $A_1 = l/(w_z \tau_p)$; $A_2 = \alpha F_w/(G_f c_{p,f})$; w_z , F_w , G_f и $c_{p,f}$ – среднерасходная скорость, м/с, смоченная площадь поверхности тела, м/с, массовый расход, кг/с, и удельная изобарная теплоемкость, Дж/(кг К), теплоносителя в *j*-м периоде.

Уравнение (11) дополняется начальным условием — уравнением (3) для Z = 0:

$$\theta_f(Z,t) = \theta_{f,j} + \sum_{l=0}^{k_{f,j}} g_{l,0} t^l$$
(11)

и граничным условием $\theta_w(1, Z, t)$ – соотношением (9) для X = 1.

Решение задача (9)-(11):

$$\begin{aligned} \theta_{f}(Z,t) &= \left[\theta_{f,j} + \sum_{l=0}^{n_{\tau}} g_{0,l}(t-A_{1}Z)^{l} \right] \exp(-A_{2}Z) + A_{2} \left\{ \theta_{\infty} \frac{\exp(-A_{2}Z) - 1}{A_{2}} + \sum_{k=0}^{n_{\tau}} \left(G_{0,k} + G_{1,k} \right) + \right. \\ &+ \sum_{n=1}^{\infty} A_{n} \cos(\mu_{n}) \sum_{m=1}^{\infty} A_{m} \left\langle G_{2}(\zeta_{n,m}^{2}, Z, t) \theta_{w,L}(\mu_{n}, \gamma_{m}, 0) + \omega_{0} \frac{\operatorname{Fo}_{p} \theta_{\infty}}{\zeta_{n,m}^{2}} \left[G_{2}(0, Z, t) - G_{2}(\zeta_{n,m}^{2}, Z, t) \right] \right] + \\ &+ \frac{\operatorname{Fo}_{p}}{\zeta_{n,m}^{2}} \sum_{l=0}^{n_{\tau}} d_{l} \left[\frac{(-1)^{l+1} l!}{(\zeta_{n,m}^{2})^{l}} G_{2}(\zeta_{n,m}^{2}, Z, t) + \sum_{r=0}^{l} \frac{(-1)^{r} l!}{(\zeta_{n,m}^{2})^{l-r}} \left[U_{r}(Y, t) - U_{r}(Y_{0}, t-A_{1}Z) \right] \right] - \\ &- \frac{\operatorname{Fo}_{p}}{\zeta_{n,m}^{2}} \left[\omega_{0} \theta_{f,j} G_{2}(0, Z, t) + \sum_{l=0}^{n_{\tau}} d_{l} l! \left[U_{l}(Y, t) - U_{l}(Y_{0}, t-A_{1}Z) \exp(-A_{2}Z) \right] \right] \right\}, \end{aligned}$$

где

$$\begin{split} G_{0,k} &= \frac{(-1)^{k}}{A_{2}^{k+1}} \sum_{l=0}^{n_{*}} g_{k,l} l! \left\{ \sum_{r=0}^{l} \frac{(-1)^{r}}{(l-r)!} \left(\frac{A_{1}}{A_{2}} \right)^{r} \left[t^{l-r} - (t-A_{1}Z)^{l-r} \exp(-A_{2}Z) \right] + \\ &+ \left(\frac{A_{1}}{A_{2}} \right)^{l-k} \exp\left(-\frac{A_{2}}{A_{1}} t \right) \sum_{p=1}^{k} \frac{C_{l,p-1}}{(k+1-p)!} \left(\frac{A_{1}}{A_{2}} \right)^{p-1} \left[t^{k+1-p} - (t-A_{1}Z)^{k+1-p} \right] \right\}; \\ G_{1,k} &= \frac{(-1)^{k}}{A_{2}^{k+1}} \sum_{l=0}^{n_{*}} g_{k,l} l! \sum_{p=1}^{k} \left(A_{2}Z \right)^{p} \left[\sum_{r=0}^{l} \left(-\frac{A_{1}}{A_{2}} \right)^{r} t^{l-r} + \\ &+ \exp\left(-\frac{A_{2}}{A_{1}} t \right) \left(-\frac{A_{2}}{A_{1}} \right)^{l-k-p} \sum_{i=0}^{k-p} \frac{C_{l,i}}{(k-p-i)!} \left(-\frac{A_{1}}{A_{2}} \right)^{i} t^{k-p-i} \right]; \\ G_{2}(b,Z,t) &= \frac{\exp(-bt)}{(A_{2}-bA_{1}) + \gamma_{m}^{2}} \left\{ V(b,Y) - V(b,Y_{0}) \exp\left[-(A_{2}-bA_{1})Z \right] \right\}; \quad V(b,Y) = \pm \gamma_{m} SKy(\gamma_{m}Y) - b \ Ky(\gamma_{m}Y); \\ U_{l}(Y,t) &= \sum_{r=0}^{l} \left\{ B_{r}(Y) \frac{t^{l-r}}{(l-r)!} + \exp\left(-\frac{A_{2}}{A_{1}} t \right) \frac{A_{1}^{l-r}}{(A_{2}^{2} + \gamma_{m}^{2})^{l-r+1}} \left[h_{l-r}\gamma_{m}Q_{1}(\gamma_{m},Y,t) - q_{l-r}Q_{2}(\gamma_{m},Y,t) \right] \right\}; \\ B_{r}(Y) &= \frac{A_{1}^{r}}{(A_{2}^{2} + \gamma_{m}^{2})^{r+1}} \left[q_{r}Ky(\gamma_{m}Y) \pm h_{r}\gamma_{m}SKy(\gamma_{m}Y) \right]; \\ Q_{1}(\gamma_{m},Y,t) &= \sin[\gamma_{m}(t/A_{1} \mp Y)] \pm \operatorname{Bi}_{y_{0}} \cos[\gamma_{m}(t/A_{1} \mp Y)] / \gamma_{m}; \end{split}$$

 $\begin{array}{ll} q_0 = A_2 \,; & q_1 = \gamma_m^2 - A_2^2 \,; & q_2 = A_2 \Big(A_2^2 - 3 \gamma_m^2 \Big) ; & q_3 = 6 A_2^2 \gamma_m^2 - A_2^4 - 3 \gamma_m^4 \,; & q_4 = A_2 \Big(A_2^4 + 5 \gamma_m^4 - 10 A_2^4 \gamma_m^2 \Big) ; & h_0 = 1 \,; \\ h_1 = -A_2 \,; & h_2 = 3 A_2^2 - \gamma_m^2 \,; & h_3 = 4 A_2 \Big(\gamma_m^2 - A_2^2 \Big) ; & h_4 = 5 A_2^4 + \gamma_m^4 - 10 A_2^4 \gamma_m^2 \,. \end{array}$

Для удобства дальнейших расчетов решение (12) обобщается уравнением регрессии (1).

Система из уравнений (2), (9) и (12) представляет собой решение сопряженной задачи о циклическом теплообмене пластины с холодным и горячим теплоносителями. Решение осуществляется методом последовательных приближений.

Значения чисел Био для боковой поверхности $\text{Bi}_{x,j} = \alpha_{x,j} \delta_w / (2\lambda_w)$ вычислялись по значениям коэффициентов теплоотдачи $\alpha_{x,j}$, которые, в свою очередь, вычислялись по значениям чисел Нуссельта, рассчитанным по уравнению подобия (1). В уравнении (1) число Нуссельта для стационарного режима теплообмена рассчитывалось по известным критериальным уравнениям:

$$Nu_{st} = \begin{cases} Nu_{lam} & \text{при Re} < 2300, \\ Nu_{lam}(1-\gamma) + \gamma Nu_{turb} & \text{при Re} > 2300, \end{cases}$$
(13)

где $\gamma = 1 - \exp(1 - \operatorname{Re}/2300);$ $\operatorname{Nu}_{lam} = \begin{cases} \operatorname{Nu}_{\min} & \operatorname{при} (\operatorname{Re} \operatorname{Pr} h/l) < 10^2, \\ 1,55 (\operatorname{Re} d_{_g}/l)^{0.4} \operatorname{Pr}^{1/3} (\operatorname{Pr}_f/\operatorname{Pr}_w)^{1/4} C_l & \operatorname{при} (\operatorname{Re} \operatorname{Pr} h/l) > 10^2; \end{cases}$ $\operatorname{Nu}_{\min} = 8,24 - 16,5 h/b + 20,7 (h/b)^2 - 8,8 (h/b)^3;$ $\operatorname{Nu}_{turb} = 0,021 \operatorname{Re}^{0.8} \operatorname{Pr}^{0,43} (\operatorname{Pr}_f/\operatorname{Pr}_w)^{1/4} C_{turb}; C_l & U C_{turb} - \operatorname{поправки} \text{ на длину канала: } C_l = 1,906 (d_g/l)^{0.173}; \end{cases}$ $C_{turb} = \exp\left[\frac{7,41+12,893 \ln(d_g/l)}{\operatorname{Re}^{0.295}}\right]; \quad \operatorname{Pr} = v_f/a_f - \operatorname{числo} \quad \operatorname{Прандтля}; \quad \operatorname{Re} = w_f d_g/v_f - \operatorname{числo}$ Рейнольдса; w_f - средняя скорость теплоносителя, м/с; d_g - эквивалентный гидравлический

геннольдеа, w_f – средняя скорость теплоносителя, м/с, u_g – эквивалентный гидравлический диаметр межпластинных каналов, м; l – длина пластины (канала), м; h – расстояние между пластинами, м; b – ширина пластины, омываемая теплоносителем, м.

Список публикаций по второму этапу:

1. Кирсанов Ю.А., Юдахин А.Е., Макарушкин Д.В., Кирсанов А.Ю. Исследования теплоотдачи в регенераторе с низкотеплопроводной насадкой // Труды Академэнерго, 2019, №2. С. 7-24.

2. Yu A Kirsanov, D V Makarushkin, A E Yudakhin, A Yu Kirsanov Method of research on heat exchange for parallel plates with low thermal conductivity in short-time processes // Journal of *Physics: Conference Series* 1382 (2019) 012134 IOP Publishing doi:10.1088/1742-596/1382/1/012134

3. Кирсанов Ю.А., Макарушкин Д.В., Кирсанов А.Ю. Влияние частоты переключения периодов на теплоотдачу насадки регенеративного воздухоподогревателя // Теплофизика и аэромеханика. 2019. Том 26. № 4. С. 539-548.

4. Yu. A. Kirsanov, D. V. Makarushkin, A. Yu. Kirsanov. The influence of the period switching frequency on the heat exchange of a regenerative air heater. Thermophysics and Aeromechanics. July 2019, Volume 26, <u>Issue 4</u>, pp 499–508. <u>doi.org/10.1134/S0869864319040036</u>

5. Кирсанов Ю.А., Юдахин А.Е., Макарушкин Д.В., Кирсанов А.Ю. Методика исследования те плоотдачи пакета параллельных низкотеплопроводных пластин в кратковременных процессах / / Тезисы докладов XXXV Сибирского теплофизического семинара 27–29 августа 2019 г. С. 215.