Приложение к отчету по гранту РНФ №19-11-00220

# 1. Экспериментальные исследования



Общий вид



Phantom MIRO C110

# **Рис. 1.1 Экспериментальная установка:** 1 – рабочий участок (d<sub>вн</sub>=0.039 м), 2 – лазер; 3 – высокоскоростная камера

# В 2020 году за счет средств гранта <u>РНФ куплены:</u>

- высокоскоростная камера Phantom MIRO C110,

- твердотельный непрерывный лазер SSP-ST-532-NB-5-5-LED-V-AS,

- оптические рельсы для позиционирования камеры и лазера





Рис. 1.2. Конфузоры

Конфузоры изготовлены из цельного прутка оргстекла (фирма Gevacril, Италия) – (а). Рабочий участок экспериментальной установки крупным планом, подсвеченным лазером – (б)



**Рис. 1.3. Рабочий участок с коробом.** Короб позволяет убрать искажения (в коробе налита аналогичная жидкость)



Рис. 1.4. Рабочий участок с шнеком, расположенным вверх по потоку относительно конфузора



Рис. 1.5. Чертежи конфузоров

**2. Метод визуализации** (*FC PAA* полиакриламид).



Рис. 2.1. Профили осевой составляющей вектора скорости в сечениях конфузора



Рис. 2.2. Профили осевой составляющей вектора скорости в сечениях конфузора со шнеком

Примечание: приготовленный водный раствор полиакриламида удобен для использования SiV метода благодаря наличию мелких частичек, позволяющих отслеживать за их траекторией движения.

#### 3. Математическое моделирование течения вязкоупругой жидкости

Реологическое уравнение состояния среды Гиезекуса

$$\begin{cases} \boldsymbol{\sigma} = \boldsymbol{\sigma}_V + \boldsymbol{\sigma}_N, \boldsymbol{\sigma}_N = 2\mu_N \mathbf{D}, \\ \boldsymbol{\sigma}_V + \lambda \, \boldsymbol{\sigma}_V + \frac{\alpha_G \lambda}{\mu_V} \boldsymbol{\sigma}_V \cdot \boldsymbol{\sigma}_V = 2\mu_V \mathbf{D}, \end{cases}$$

где  $\mathbf{\sigma} = \frac{d\mathbf{\sigma}}{dt} - \mathbf{\sigma} \cdot \nabla \mathbf{V}^T - \nabla \mathbf{V} \cdot \mathbf{\sigma} = \frac{\partial \mathbf{\sigma}}{\partial t} + \nabla \mathbf{\sigma} \cdot \mathbf{V} - \mathbf{\sigma} \cdot \nabla \mathbf{V}^T - \nabla \mathbf{V} \cdot \mathbf{\sigma}$  - верхняя конвективная производная

тензора  $\sigma$ ;  $\sigma$  - девиатор тензора напряжений;  $\sigma_N, \sigma_V$  - вязкая и упругая составляющие тензора  $\sigma$ ; **D** - тензор скоростей деформаций;  $\mu_N, \mu_V$  -вязкости;  $\lambda$  - время релаксации;  $\alpha_G$  - реологический параметр; **V** - вектор скорости.

#### 3.1. Течение в гладком конфузоре



Граничные условия:

(на входе)  $V_z = \frac{2V_a}{R_1^2} (R_1^2 - r^2), V_r = 0;$ (на стенках канала)  $V_z = 0, V_r = 0;$ (на выходе) касательные напряжения равны нулю

здесь  $V_a$  - среднерасходная скорость.

#### 3.2. Течение в конфузоре со шнеком



Рис. 3.2. Конфузор №2

$$\rho_{f}\left(V_{r}\frac{\partial V_{r}}{\partial r}+V_{z}\frac{\partial V_{r}}{\partial z}-\frac{V_{\phi}^{2}}{r}\right)=-\frac{\partial p}{\partial r}+\frac{1}{r}\frac{\partial}{\partial r}\eta_{s}\left(2r\frac{\partial V_{r}}{\partial r}\right)+\frac{\partial}{\partial z}\eta_{s}\left(\frac{\partial V_{r}}{\partial z}+\frac{\partial V_{z}}{\partial r}\right)-2\eta_{s}\frac{V_{r}}{r^{2}}+\\+\sum_{m=1}^{n}\left(\frac{\partial\sigma_{rr(m)}}{\partial r}+\frac{\sigma_{rr(m)}}{r}+\frac{\partial\sigma_{rz(m)}}{\partial z}-\frac{\sigma_{\phi\phi(m)}}{r}\right),$$
(1)

$$\rho_{f}\left(V_{r}\frac{\partial V_{\varphi}}{\partial r}+V_{z}\frac{\partial V_{\varphi}}{\partial z}+\frac{V_{r}V_{\varphi}}{r}\right)=\frac{1}{r^{2}}\frac{\partial}{\partial r}\eta_{s}\left(r^{2}\frac{\partial V_{\varphi}}{\partial r}-rV_{\varphi}\right)+\frac{\partial}{\partial z}\eta_{s}\frac{\partial V_{\varphi}}{\partial z}+\sum_{m=1}^{n}\left(\frac{\partial\sigma_{r\varphi(m)}}{\partial r}+2\frac{\sigma_{r\varphi(m)}}{r}+\frac{\partial\sigma_{\varphi(m)}}{\partial z}\right),$$
(2)

$$\rho_f \left( V_r \frac{\partial V_z}{\partial r} + V_z \frac{\partial V_z}{\partial z} \right) = \frac{\partial p}{\partial z} + \frac{1}{r} \frac{\partial}{\partial r} r \eta_s \left( \frac{\partial V_r}{\partial z} + \frac{\partial V_z}{\partial r} \right) + \frac{\partial}{\partial z} 2 \eta_s \frac{\partial V_z}{\partial z} + \sum_{m=1}^n \left( \frac{\partial \sigma_{rz(m)}}{\partial r} + \frac{\sigma_{rz(m)}}{r} + \frac{\partial \sigma_{zz(m)}}{\partial z} \right), \tag{3}$$

$$\frac{\partial V_r}{\partial r} + \frac{V_r}{r} + \frac{\partial V_z}{\partial z} = 0 \tag{4}$$

где  $V_r$ ,  $V_{\varphi}$ ,  $V_z$  аге радиальная, окружная и аксиальная составляющие вектора скорости соответственно;  $r, \varphi, z$  цилиндрическая система координат; p давление,  $\rho_f$  плотность жидкости;  $\sigma_{rr(m)}$ ,  $\sigma_{r\varphi(m)}$ ,  $\sigma_{rz(m)}$ ,  $\sigma_{\varphi\varphi(m)}$ ,  $\sigma_{\varphi z(m)}$ ,  $\sigma_{zz(m)}$  компоненты тензора напряжений (**T**);  $\mathbf{T} = \sigma_{ij} = \sum_{m=1}^{n} \boldsymbol{\sigma}_m + \boldsymbol{\sigma}_N$ ,  $\mathbf{n} = 4$ число мод,  $\boldsymbol{\sigma}_N = 2\eta_N \mathbf{D}$  ньютоновская составляющая тензора напряжений **T**;  $\eta_N$  вязкость для  $\boldsymbol{\sigma}_N$ .

Граничные условия

$$V_r = 0, \ V_{\varphi} = \frac{K \cdot V_a}{R_1} \cdot r, \ V_z = \frac{2V_a}{R_1^2} \left( R_1^2 - r^2 \right)$$
(Ha BXODE) (5)

 $V_r = 0, V_{0} = 0, V_z = 0$  (на стенках канала); (6)

Касательные напряжения и давление полагается равным нулю.

Здесь  $V_a = Q/(\pi R_1^2)$  среднерасходная скорость, Q - объемный расход (m3/s).

Граничные условия (5) представляют идеальную модель, поэтому для численных исследований использована следующая модель:

$$V_{\varphi} = \omega \cdot r \cdot \left( 1 - \left( \frac{r}{R_1} \right)^{30} \right), \ \omega = \frac{K \cdot V_a}{R_1} - \text{угловая скорость.}$$
(7)

#### 4. Результаты численных исследований





Рис. 4.1. Безразмерная осевая составляющая вектора скорости в сечениях (а) и на оси (б) канала: сплошная линия – 4 mode Giesekus ( $\bar{\lambda} = 1.74$ ), пунктирная линия – 2 mode Giesekus ( $\bar{\lambda} = 0.84$ ), точки – эксперимент ( $V_a$ =1.975 mm/s).

## 4.1. Течение в гладком конфузоре



Рисунок 4.2 Профили безразмерной осевой составляющей вектора скорости (a), нормальных (б) и касательных (в) напряжений



Рисунок 4.3. Распределение вдоль оси симметрии безразмерной осевой составляющей вектора скорости (а, в) и первой разности нормальных напряжений (г, д)

# 4.2. Течение в конфузоре со шнеком



Рисунок 4.4. Распределение безразмерных компонент вектора скорости при различной интенсивности закрученного потока,  $V_a = 0.03$  m/s: синий  $-l_2 = 0.03$  красный  $-l_2 = 1/4$ , зеленый  $-l_2 = 1/2$ , фиолетовый  $-l_2 = 3/4$ , оранжевый  $-l_2 = 1$ .



Рисунок 4.5. Распределение безразмерных компонент вектора скорости при различной среднерасходной скорости закрученного потока, (K=6): синий – l<sub>2</sub>=0, красный – l<sub>2</sub>=1/4, зеленый – l<sub>2</sub>=1/2, фиолетовый – l<sub>2</sub>=3/4, оранжевый – l<sub>2</sub>=1.



Рисунок 4.6. Первая разность нормальных напряжений вдоль центральной оси для различной инетенсивности закрученного потока (K) и средней скорости ( $V_a$ ): синий - K=4, красный - K=6.



Рисунок 4.7. Интегральный параметр закрутки: красный – K=6, синий – K=4, зеленый – K=2

| $\leftarrow \   \rightarrow$ | C 🔒 icr2020.pcoabreu.com/area#           |                           |                                 | 🖈 嘴 💀 🖲 🛪 🔂 E   |
|------------------------------|------------------------------------------|---------------------------|---------------------------------|-----------------|
|                              |                                          | ICR                       | 2020                            | Å               |
|                              |                                          | 18TH INTERNATION          | AL CONGRESS ON RHEOLOGY         |                 |
|                              |                                          | FULL NAME                 | EMAIL                           |                 |
|                              |                                          | ABEL GASPAR-ROSAS         | agaspar-rosas@tainstruments.com |                 |
|                              |                                          | ABHILASH REDDY MALIPEDDI  | abhilash@gwu.edu                |                 |
| Video<br>Conferences         |                                          | ABHIMANYU KIRAN           | abhimanyu.kiran@iitrpr.ac.in    |                 |
| A                            |                                          | ABHINENDRA SINGH          | abhinendra@uchicago.edu         |                 |
| Exhibitors                   |                                          | ABHISHEK SHETTY           | abhi.shetty@anton-paar.com      |                 |
|                              |                                          | ADAEZE AMAKA UNDIEH       | aundieh@stanford.edu            |                 |
| Program<br>Overview          |                                          | ADAM TOWNSEND             | adam.k.townsend@durham.ac.uk    |                 |
| <b>(</b>                     |                                          | ADE OGUNKEYE              | 846135@swansea.ac.uk            |                 |
| Short- Courses               |                                          | ADEBANJI OLASUPO OLUWOLE  | astsupo@yahoo.com               |                 |
| A                            |                                          | ADRIEN DURAND-PETITEVILLE | ajsd@cin.ufpe.br                |                 |
| Participant List             |                                          | AHMAD NAQI                | naqi@udel.edu                   |                 |
|                              |                                          | AHMAD SHAKEEL             | a.shakeel@tudelft.nl            |                 |
| Tutorial ICR -<br>2020       |                                          | AHMAD ZUHEIR BIN ZAIDON   | azz22@cam.ac.uk                 |                 |
| <b>A</b>                     |                                          | AIDAR ILDUSOVICH KADYIROV | aidarik@rambler.ru              |                 |
| Contacts                     |                                          | AIJIE HAN                 | auh389@psu.edu                  |                 |
| 6                            |                                          | AKANKSHA GAVENDRA         | p20150404@goa.bits-pilani.ac.in |                 |
| Logout                       |                                          | AKBARI                    | soheil.akbari.1@ulaval.ca       |                 |
|                              |                                          | ALAN LUGARINI             | alansouza@utfpr.edu.br          |                 |
|                              |                                          | ALANNAH SIQUEIRA GUERRERO | alannah.guerrero@lambra.com.br  |                 |
|                              |                                          | ALBERT CO                 | albertco@maine.edu              |                 |
|                              |                                          | ALDO SPATAFORA SALAZAR    | astefanoss@rice.edu             |                 |
|                              |                                          | ALEJANDRA ALVAREZ         | avalvarez@jri.cl                |                 |
| E P                          | Введите здесь текст для поиска 🛛 🛱 😓 🥫 🗭 |                           | eed by Admaus                   | へ 中) 🏳 ENG 1629 |