к отчету по гранту РНФ №19-11-00220

1. Экспериментальные исследования

Рис. 1. Общий вид экспериментальной установки (один из вариантов сборки). *1* – емкость с раствором полиакриламида, *2* – кране, *3* – труба из оргстекла, *4* – короб для невилирования оптических искажений со сменными рабочими участками, *5* – лазер, *6* – датчик термопреобразователь сопротивления (ДТС), *7* – устройство обработки сигналов с ДТС (Термодат).

В 2021 году за счет средств гранта <u>РНФ куплены:</u>

- 32 ядерный сервер для 3-х мерного численного моделирования,

- персональный компьютер для ускорения обработки видеоизображений,

- термодат для регистрации температуры,

- вакуумный насос для откачки воздуха из приготовленного водного раствора полиакриламида

- дополнительные полиамидные частицы для визуализации размером до 5мкм,

- опция TrueStrain для реометра, позволяющая сокращать время реологических испытаний в 1,5

раза, что важно в связи незначительным испарением раствора во время тестов,

- расходные материалы для дооснащения экспериментального стенда.

Рис. 2. Рабочий участок с вращающимся шнеком, расположенным вверх по потоку относительно конфузора

Рис. 3. Зависимость вязкости от скорости сдвига для нефтеполимерной смолы

Рис. 4. Зависимость динамических модулей от угловой скорости (а, б, в) и эффективной вязкости от скорости сдвига (г). (растворы полиакриламида, T=293K)

3. Математическое моделирование течения вязкоупругой жидкости

Реологическое уравнение состояния среды Гиезекуса

$$\begin{cases} \mathbf{\sigma} = \mathbf{\sigma}_V + \mathbf{\sigma}_N, \mathbf{\sigma}_N = 2\mu_N \mathbf{D}, \\ \mathbf{\sigma}_V + \lambda \, \mathbf{\sigma}_V + \frac{\alpha_G \lambda}{\mu_V} \mathbf{\sigma}_V \cdot \mathbf{\sigma}_V = 2\mu_V \mathbf{D}, \end{cases}$$

где $\mathbf{\sigma} = \frac{d\mathbf{\sigma}}{dt} - \mathbf{\sigma} \cdot \nabla \mathbf{V}^T - \nabla \mathbf{V} \cdot \mathbf{\sigma} = \frac{\partial \mathbf{\sigma}}{\partial t} + \nabla \mathbf{\sigma} \cdot \mathbf{V} - \mathbf{\sigma} \cdot \nabla \mathbf{V}^T - \nabla \mathbf{V} \cdot \mathbf{\sigma}$ - верхняя конвективная производная

тензора σ ; σ - девиатор тензора напряжений; σ_N, σ_V - вязкая и упругая составляющие тензора σ ; **D** - тензор скоростей деформаций; μ_N, μ_V - вязкости; λ - время релаксации; α_G - реологический параметр; **V** - вектор скорости.

3.1. Установившееся ламинарное течение вязкоупругой жидкости в канале с винтовой симметрией

Основная винтовая система координат связана с декартовой системой координат соотношениями

$$\begin{cases} x = \zeta^{1} \cos\left(\zeta^{2} / R \pm \omega \zeta^{3}\right) \\ y = \zeta^{1} \sin\left(\zeta^{2} / R \pm \omega \zeta^{3}\right), \\ z = \zeta^{3} \end{cases}$$

где $\omega = \frac{2\pi}{S}$, R - больший радиус канала с винтовой шнековой вставкой, S - шаг винтового канала (длина части канала, соответствующая повороту ребра шнека на 360 градусов). Знак "+" или "-" отвечает за ориентацию ребер шнековой вставки.

Система уравнение переноса количества движения и неразрывности в винтовой системе координат в проекциях на естественные направления запишутся как

$$\begin{split} & \operatorname{Re}^{*} \left(\frac{\partial v^{1}}{\partial \eta^{1}} v^{1} + \frac{\partial v^{1}}{\partial \eta^{2}} v^{2} - \eta^{1} v^{2} v^{2} \pm 2\kappa \eta^{1} v^{2} v^{3} - \kappa^{2} \eta^{1} v^{3} v^{3} \right) = \\ &= -\frac{\partial p^{*}}{\partial \eta^{1}} + \frac{\partial s_{1}^{-1}}{\partial \eta^{1}} + \frac{\partial s_{1}^{-2}}{\partial \eta^{2}} - \frac{1}{\eta^{1}} s_{2}^{-2} \pm \frac{\kappa}{\eta^{1}} s_{2}^{-3} + \frac{1}{\eta^{1}} s_{1}^{-1} , \\ & \operatorname{Re}^{*} \left(\eta^{1} \right)^{2} \left(\frac{\partial v^{2}}{\partial \eta^{1}} v^{1} + \frac{\partial v^{2}}{\partial \eta^{2}} v^{2} + \frac{2}{\eta^{1}} v^{1} v^{2} \mp \frac{2\kappa}{\eta^{1}} v^{1} v^{3} \right) \mp \operatorname{Re}^{*} \kappa \left(\eta^{1} \right)^{2} \left(\frac{\partial v^{3}}{\partial \eta^{1}} v^{1} + \frac{\partial v^{3}}{\partial \eta^{2}} v^{2} \right) = \\ &= -\frac{\partial p^{*}}{\partial \eta^{2}} + \frac{\partial s_{2}^{-1}}{\partial \eta^{1}} + \frac{\partial s_{2}^{-2}}{\partial \eta^{2}} + \eta^{1} s_{1}^{-2} \mp \kappa \eta^{1} s_{1}^{-3} , \\ & \mp \operatorname{Re}^{*} \kappa \left(\eta^{1} \right)^{2} \left(\frac{\partial v^{2}}{\partial \eta^{1}} v^{1} + \frac{\partial v^{2}}{\partial \eta^{2}} v^{2} + \frac{2}{\eta^{1}} v^{1} v^{2} \mp \frac{2\kappa}{\eta^{1}} v^{1} v^{3} \right) + + \operatorname{Re}^{*} \left(1 + \kappa^{2} \left(\eta^{1} \right)^{2} \right) \left(\frac{\partial v^{3}}{\partial \eta^{1}} v^{1} + \frac{\partial v^{3}}{\partial \eta^{2}} v^{2} \right) = \\ &= -\frac{\partial p^{*}}{\partial \eta^{3}} + \frac{\partial s_{3}^{-1}}{\partial \eta^{1}} + \frac{\partial s_{3}^{-2}}{\partial \eta^{2}} \pm \frac{\kappa}{\eta^{1}} s_{1}^{-2} + \kappa^{\eta^{1}} s_{1}^{-2} + \kappa^{2} \eta^{1} s_{1}^{-3} + \frac{1}{\eta^{1}} s_{3}^{-1} , \\ & \frac{\partial v^{1}}{\partial \eta^{1}} + \frac{\partial v^{2}}{\partial \eta^{2}} + \frac{1}{\eta^{1}} v^{1} = 0 , \end{split}$$

где $\kappa = \omega R$, $\frac{\partial p^*}{\partial \eta^3} = const$, $\operatorname{Re}^* = \frac{\rho_f V^* R}{\mu_0}$ - обобщенное число Рейнольдса; $\eta^i = \zeta^i / R(i=1,2,3)$ безразмерные переменные; $v^i = V^i / V^* (i=1,2,3)$ - безразмерные контравариантные компоненты скорости; $p^* = PR / (\mu_0 V^*)$ - безразмерное давление, где V^* и $\mu_0 = \mu_N + \sum_{k=1}^n \mu_{Vk}$ - некоторые характерные значения скорости и вязкости; $s_i^{\ j} = 2 \frac{\mu_N}{\mu_0} d_i^{\ j} + \sum_{k=1}^n \frac{\mu_{Vk}}{\mu_0} s_{Vki}^{\ j}$ - безразмерные смешанные компоненты девиатора тензора напряжений.

Реологическое уравнение «Giesekus» для безразмерного тензора упругих напряжений $\mathbf{s}_{vk} = \mathbf{\sigma}_{vk} R / (V^* \mu_0)$, записанное для контравариантных компонент примет вид

$$\left(\mathbf{s}_{Vk}\right)_{i}^{j} + \frac{\lambda_{k}}{\lambda_{0}} W e^{*} \left(\mathbf{s}_{Vk}\right)_{i}^{j} + \alpha_{k} \frac{\lambda_{k}}{\lambda_{0}} W e^{*} \left(\mathbf{s}_{Vk} \cdot \mathbf{s}_{Vk}\right)_{i}^{j} = 2 \frac{\mu_{Vk}}{\mu_{0}} \left(\mathbf{d}\right)_{i}^{j} \cdot \mathbf{w}^{*} = \frac{\lambda_{0} V^{*}}{R}, \ \lambda_{0} = \sum_{k=1}^{n} \lambda_{k} \cdot \mathbf{w}^{*} \cdot \mathbf{w$$

3.2. Ламинарное течение вязкоупругой жидкости в конфузоре.

Рис. 5. Геометрия конфузора

$$\rho_{f}\left(V_{r}\frac{\partial V_{r}}{\partial r}+V_{z}\frac{\partial V_{r}}{\partial z}-\frac{V_{\varphi}^{2}}{r}\right)=-\frac{\partial p}{\partial r}+\frac{1}{r}\frac{\partial}{\partial r}\eta_{s}\left(2r\frac{\partial V_{r}}{\partial r}\right)+\frac{\partial}{\partial z}\eta_{s}\left(\frac{\partial V_{r}}{\partial z}+\frac{\partial V_{z}}{\partial r}\right)-2\eta_{s}\frac{V_{r}}{r^{2}}+$$
$$+\sum_{m=1}^{n}\left(\frac{\partial\sigma_{rr(m)}}{\partial r}+\frac{\sigma_{rr(m)}}{r}+\frac{\partial\sigma_{rz(m)}}{\partial z}-\frac{\sigma_{\varphi\varphi(m)}}{r}\right),$$
(1)

$$\rho_f\left(V_r\frac{\partial V_{\varphi}}{\partial r} + V_z\frac{\partial V_{\varphi}}{\partial z} + \frac{V_rV_{\varphi}}{r}\right) = \frac{1}{r^2}\frac{\partial}{\partial r}\eta_s\left(r^2\frac{\partial V_{\varphi}}{\partial r} - rV_{\varphi}\right) + \frac{\partial}{\partial z}\eta_s\frac{\partial V_{\varphi}}{\partial z} + \sum_{m=1}^n\left(\frac{\partial\sigma_{r\varphi(m)}}{\partial r} + 2\frac{\sigma_{r\varphi(m)}}{r} + \frac{\partial\sigma_{\varphi(m)}}{\partial z}\right),\tag{2}$$

$$\rho_{f}\left(V_{r}\frac{\partial V_{z}}{\partial r}+V_{z}\frac{\partial V_{z}}{\partial z}\right)=\frac{\partial p}{\partial z}+\frac{1}{r}\frac{\partial}{\partial r}r\eta_{s}\left(\frac{\partial V_{r}}{\partial z}+\frac{\partial V_{z}}{\partial r}\right)+\frac{\partial}{\partial z}2\eta_{s}\frac{\partial V_{z}}{\partial z}+\sum_{m=1}^{n}\left(\frac{\partial\sigma_{rz(m)}}{\partial r}+\frac{\sigma_{rz(m)}}{r}+\frac{\partial\sigma_{zz(m)}}{\partial z}\right),$$

$$(3)$$

$$\frac{\partial v_r}{\partial r} + \frac{v_r}{r} + \frac{\partial v_z}{\partial z} = 0$$
(4)

где V_r , V_{φ} , V_z аге радиальная, окружная и аксиальная составляющие вектора скорости соответственно; r, φ, z цилиндрическая система координат; p давление, ρ_f плотность жидкости; $\sigma_{rr(m)}$, $\sigma_{r\varphi(m)}$, $\sigma_{rz(m)}$, $\sigma_{\varphi\varphi(m)}$, $\sigma_{\varphi_{z(m)}}$, $\sigma_{zz(m)}$ компоненты тензора напряжений (**T**); $\mathbf{T} = \sigma_{ij} = \sum_{m=1}^{n} \boldsymbol{\sigma}_m + \boldsymbol{\sigma}_N$, $\mathbf{n} = 4$ число мод, $\boldsymbol{\sigma}_N = 2\eta_N \mathbf{D}$ ньютоновская составляющая тензора напряжений **T**; η_N вязкость для $\boldsymbol{\sigma}_N$.

Граничные условия

$$V_r = 0, V_{\varphi} = \frac{K \cdot V_a}{R_1} \cdot r, V_z = \frac{2V_a}{R_1^2} (R_1^2 - r^2)$$
 (на входе) (5)

(6)

 $V_r = 0$, $V_{\phi} = 0$, $V_z = 0$ (на стенках канала);

, 20)

Касательные напряжения и давление полагается равным нулю.

Здесь $V_a = Q / (\pi R_1^2)$ среднерасходная скорость, Q - объемный расход (m3/s).

Граничные условия (5) представляют идеальную модель, поэтому для численных исследований использована следующая модель:

$$V_{\varphi} = \omega \cdot r \cdot \left(1 - \left(\frac{r}{R_1} \right)^{3} \right), \ \omega = \frac{K \cdot V_a}{R_1} - \text{угловая скорость.}$$
(7)

4. Результаты

4.1. Течение в конфузоре

Рис.6. Профили безразмерной осевой составляющей вектора скорости (T_a=23°C, L₂=1)

Рис.7. Распределение безразмерной осевой составляющей вектора скорости на оси канала (T_a=23°C): *(a)* L₂=D₁; *(б)* D₁: D₂=3.9:1

4.2. Течение в конфузоре со шнеком

Рис. 8. Профили безразмерной осевой составляющей вектора скорости (скорость вращения шнека 6.28 рад/сек, T_a=24°C):

Участие в конференции

